Central limit theorems for non-symmetric random walks on nilpotent covering graphs

Ryuya Namba (Okayama Univ.) e-mail: sc422113@s.okayama-u.ac.jp (Joint work with S. Ishiwata (Yamagata Univ.) and H. Kawabi (Okayama Univ.))

As a fundamental problem in the theory of random walks (RWs), Donsker's invariance principle or the functional central limit theorem has been studied intensively and extensively. In particular, Ishiwata, Kawabi and Kotani [2] studied this problem for non-symmetric RWs on a crystal lattice from a viewpoint of *discrete geometric analysis* initiated by Sunada [3]. On the other hand, Ishiwata [1] also discussed this problem for symmetric RWs on a *nilpotent covering* graph X, a (locally finite and connected) covering graph of a finite graph X_0 whose covering transformation group Γ is a torsion free and finitely generated nilpotent group. In this talk, we consider a class of non-symmetric RWs on X and discuss Donsker's invariance principle for them as an extension of [1, 2].

Let X = (V, E) be a nilpotent covering graph. Here V is a set of all vertices and E a set of all oriented edges in X. For $e \in E$, we denote the origin, terminus and inverse edge of e by o(e), t(e) and \overline{e} , respectively. $E_x := \{e \in E \mid o(e) = x\}$ denotes the set of all edges whose origin is $x \in V$. In the following, we introduce basic materials for RWs on X. Now let $p : E \longrightarrow (0, 1]$ be a (Γ -invariant) 1-step transition probability and $\{w_n\}_{n=0}^{\infty}$ a RW on X associated with p. We may also consider the RW $\{\pi(w_n)\}_{n=0}^{\infty}$ on the quotient $X_0 = (V_0, E_0)$ due to the Γ -invariance of p. Here $\pi : X \longrightarrow X_0$ is a covering map. Let $m : V_0 \longrightarrow (0, 1]$ be a normalized invariant measure on X_0 and we also write $m : V \longrightarrow (0, 1]$ for the Γ -invariant lift of m to X. Let $H_1(X_0, \mathbb{R})$ and $H^1(X_0, \mathbb{R})$ be the first homology group and the first cohomology group of X_0 , respectively. We define the homological direction of the RW on X_0 by $\gamma_p := \sum_{e \in E_0} p(e)m(o(e))e \in H_1(X_0, \mathbb{R})$. We call the RW on X_0 (m-)symmetric if $p(e)m(o(e)) = p(\overline{e})(t(e))$ ($e \in E_0$). It easily follows that the RW is (m-)symmetric if and only if $\gamma_p = 0$.

Thanks to the celebrated theorem of Malćev, we find a connected and simply connected nilpotent Lie group G such that Γ is isomorphic to the lattice in G. In what follows, we always assume that G is free of step 2. Namely, its Lie algebra \mathfrak{g} has the direct sum decomposition of the form $\mathfrak{g} = \mathfrak{g}^{(1)} \oplus \mathfrak{g}^{(2)} = \mathfrak{g}^{(1)} \oplus [\mathfrak{g}^{(1)}, \mathfrak{g}^{(1)}]$. Now we take a canonical surjective linear map $\rho_{\mathbb{R}} : H_1(X_0, \mathbb{R}) \longrightarrow \mathfrak{g}^{(1)}$ through π . By the discrete Hodge–Kodaira theorem, an inner product

$$\langle\!\langle \omega,\eta\rangle\!\rangle_p := \sum_{e\in E_0} p(e)m(o(e))\omega(e)\eta(e) - \langle \omega,\gamma_p\rangle\langle\eta,\gamma_p\rangle \quad (\omega,\eta\in \mathrm{H}^1(X_0,\mathbb{R}))$$

associated with the transition probability p is induced from the space of (modified) harmonic 1-forms on X_0 to $\mathrm{H}^1(X_0,\mathbb{R})$. Using the map $\rho_{\mathbb{R}}$, we construct a flat metric g_0 on $\mathfrak{g}^{(1)}$ from the inner product $\langle\!\langle \cdot, \cdot \rangle\!\rangle_p$ and this is called the *Albanese metric*. A periodic realization $\Phi_0 : X \longrightarrow G$ is said to be *modified harmonic* if

$$\sum_{e \in E_x} p(e) \log \left(\Phi_0(o(e))^{-1} \cdot \Phi_0(t(e)) \right) \Big|_{\mathfrak{g}^{(1)}} = \rho_{\mathbb{R}}(\gamma_p) \quad (x \in V).$$

The quantity on the right-hand side of (\blacklozenge) is called the *asymptotic direction*. It should be noted that $\gamma_p = 0$ implies $\rho_{\mathbb{R}}(\gamma_p) = \mathbf{0}_{g}$, however, the converse does not hold in general.

We fix a reference point $x_* \in V$ and take a modified harmonic realization $\Phi_0 : X \longrightarrow G$ such that $\Phi_0(x_*) = \mathbf{1}_G$. Now consider the RW on \mathfrak{g} given by $\Xi_n := \log(\Phi_0(w_n))(n = 0, 1, 2, ...)$ and the sequence of *G*-valued continuous stochastic processes $\{\mathcal{Y}_{n}^{(n)}\}_{n=0}^{\infty}$ given by $\mathcal{Y}_t^{(n)} := \tau_{n^{-1/2}}(\exp(\mathfrak{X}_t^{(n)}))(t \in [0, 1])$. Here $\tau_{\varepsilon} (0 \leq \varepsilon \leq 1)$ is the dilation operator acting on G and $\mathfrak{X}_t^{(n)} := \Xi_{[nt]} + (nt - [nt])(\Xi_{[nt]+1} - \Xi_{[nt]})$. Let $\{V_1, \ldots, V_d\}$ be an orthonormal basis of $(\mathfrak{g}^{(1)}, g_0)$. We note that $\{[V_i, V_j] : 1 \leq i < j \leq d\}$ forms a basis of $\mathfrak{g}^{(2)}$ by the assumption that G is free. Here we put

$$\beta(\Phi_0) := \sum_{e \in E_0} p(e) m(o(e)) \log \left(\Phi_0(o(e))^{-1} \cdot \Phi_0(t(e)) \right) \Big|_{\mathfrak{g}^{(2)}} = \sum_{1 \le i < j \le d} \beta(\Phi_0)^{ij} [V_i, V_j] \in \mathfrak{g}^{(2)}.$$

Note that $\gamma_p = 0 \implies \beta(\Phi_0) = \mathbf{0}_{\mathfrak{g}}$. Let $(Y_t)_{t \ge 0}$ be the *G*-valued diffusion process starting from the unit $\mathbf{1}_G$ which solves a stochastic differential equation

$$dY_t = \sum_{1 \le i \le d} V_i(Y_t) \circ dB_t^i + \beta(\Phi_0)(Y_t) \, dt,$$

where $(B_t)_{t\geq 0} = (B_t^1, \ldots, B_t^d)_{t\geq 0}$ is an \mathbb{R}^d -valued standard BM. Let $\mathcal{A} := (1/2) \sum_{1\leq i\leq d} V_i^2 + \beta(\Phi_0)$ be the infinitesimal generator of $(Y_t)_{t\geq 0}$. Then we obtain

Theorem. Assume $\rho_{\mathbb{R}}(\gamma_p) = \mathbf{0}_{\mathfrak{g}}$. For $t \geq 0$ and $f \in C_{\infty}(G)$, we have

$$\lim_{n \to \infty} \left\| L^{[nt]} P_{n^{-1/2}} f - P_{n^{-1/2}} e^{-t\mathcal{A}} f \right\|_{\infty}^{X} = 0$$

Moreover, we obtain $(\mathcal{Y}_t^{(n)})_{t\geq 0} \Longrightarrow (Y_t)_{t\geq 0}$ in $C_{\mathbf{1}_G}([0,1];G)$ as $n \to \infty$.

If time permits, we will discuss a rough path theoretic interpretation of this theorem and give an example of a RW on a nilpotent covering graph with $\Gamma = \mathbb{H}^3(\mathbb{Z})$.

References

- S. Ishiwata: A central limit theorem on a covering graph with a transformation group of polynomial growth, J. Math. Soc. Japan 55 (2003), pp. 837–853.
- [2] S. Ishiwata, H. Kawabi and M. Kotani: Long time asymptotics of non-symmetric random walks on crystal lattices, To appear in J. Funct. Anal.
- [3] T. Sunada: Topological Crystallography with a Viewpoint Towards Discrete Geometric Analysis, Surveys and Tutorials in the Applied Mathematical Sciences 6, Springer Japan, 2013.